Pulsed Eddy Current Testing (PECT) stands out as an advanced method in Non-Destructive Testing due to its extensive spectrum characteristics in comparison to traditional ECT techniques, making it exceptionally suitable for identifying corrosion. Nonetheless, the analysis of PECT signals for corrosion detection poses a challenge due to the transient nature of these signals and the impact of sensor lift-off effects. As a result, conventional methods are facing hurdles in dealing with corrosion signals of poor quality. In this study, the challenge is addressed by employing unsupervised learning methods utilizing an autoencoder neural network. This autoencoder integrates Long Short-Term Memory and 1D convolutional layers, acquiring the underlying features of normal PECT signals from non-corrosive regions. Significantly, the model is trained exclusively on this normal data, thereby obviating the necessity for pre-existing corrosion information. Through learning the inherent structure of normal signals, the model can detect anomalies in unseen data, potentially indicating corrosion. The unsupervised framework presents several advantages, such as reducing reliance on prior corrosion knowledge, mitigating inherent noise, and addressing sensor lift-off effects. Experimental results were conducted to compare with traditional methods like the lift-off of intersection and lift-off compensation methods. This approach resulted in a significant improvement in SNR, ranging from 100 % to 200 %, thus facilitating more robust NDT applications employing smart PECT sensors empowered by unsupervised learning techniques.