Abstract The phosphatidylinositol 3-kinase (PI3K) signaling pathway is frequently activated in tumors and promotes oncogenic cell transformation, proliferation and tumor growth. PQR309, a novel dual inhibitor of PI3K and mTOR, is currently in Phase I clinical development in cancer patients. PQR309 binds potently and specifically to the ATP binding pocket of all PI3K class I isoforms and mTORC1/2, attenuates PI3K signaling and inhibits tumor cell growth. The preclinical pharmacological and toxicological characterization of PQR309 is presented here. Methods: PQR309 pharmacokinetics/-dynamics (PK/PD) were investigated in rats and mice. Tissue samples from plasma, brain and liver were analyzed by LC/MS detecting PQR309 distribution as well as blood insulin and glucose. Toxicological studies were performed in rats and dogs. Effects on neurological, hematopoietic, respiratory, lymphoid, reproductive and cardiovascular system as well as general health were monitored. The metabolic fate of PQR309 was analyzed in rat, dog and human hepatocytes. Results: PQR309 PK studies in rats, mice and dogs revealed dose-proportional PK, both PO and IV, with a half-life of 5-8 hours in plasma, brain and liver, allowing for once a day oral application. As on-target effect, increase of blood insulin and glucose could be observed within hours after oral dosage in rats, which makes both molecules suitable as PD markers. In in vivo PC-3 rat tumor xenograft models, PQR309 effectively inhibited PI3K signaling in tumors and reduced tumor growth at 10 mg/kg oral dosing. Preclinical toxicity testing showed no signs of cardiotoxicity (including lack of hERG binding), phototoxicity (3T3 NRU test) or mutagenicity (AMES test) for PQR309. No marked effect on CYP450 activity was observed making PQR309 a good combination partner in cancer therapy. As for other PI3K inhibitors, PQR309 leads at elevated doses to a fully reversible loss of body weight and appetite in rats and dogs. No further significant adverse events were observed when testing PQR309 for 28 days in these species. Conclusions: PQR309 potently inhibits class I PI3K isoforms and mTORC1/2 and shows anti-tumor effects in vitro and in vivo. The physico-chemical properties of PQR309 result in good oral bioavailability and equal distribution between plasma and brain. Pre-clinical data led to initiation of a Phase I clinical study of PQR309 in solid tumors. Citation Format: Vladimir Cmiljanovic, Robert A. Ettlin, Florent Beaufils, Walter Dieterle, Petra Hillmann, Juergen Mestan, Anna Melone, Thomas Bohnacker, Marc Lang, Natasa Cmiljanovic, Bernd Giese, Paul Hebeisen, Matthias P. Wymann, Doriano Fabbro. PQR309: A potent, brain-penetrant, dual pan-PI3K/mTOR inhibitor with excellent oral bioavailability and tolerability. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 4514. doi:10.1158/1538-7445.AM2015-4514
Read full abstract