The presence of microorganisms performing extracellular electron transfer has been established in many environments. Research to determine their role is moving slowly due to the high cost of potentiostats and the variance of data with small number of replicates. Here, we present a 128-channel potentiostat, connected to a 128 gold electrode array. Whereas the system is able to perform simultaneously 128 (bio)electrochemical measurements with an independent electrical signal input, the present manufacturing of the array limited the number of effective channels for this study to 77. We assessed the impact of 11 electrode potentials ranging from −0.45V to +0.2V vs. Ag/AgCl (7 replicates per potential) on the growth and electrochemical characteristics of anodic electroactive biofilms (EABs) formed by acetate-fed microbial communities. After 7 days of growth, maximum current was reached for electrodes poised at −0.3V, closely followed by −0.25V and −0.1V to +0.1V, a range well-fitting the midpoint potential of minerals naturally reduced by electroactive bacteria such as Geobacter Sulfurreducens. There was no significant difference in apparent midpoint potential of the EABs (−0.35V), suggesting that the mechanism of heterogeneous electron transfer was not affected by the electrode potential. The EABs poised below current plateau potential (≤−0.3V) exhibited slower growth but higher charge transfer parameters. The high-throughput and high reproducibility provided by the array may have a major facilitating impact on the field of electromicrobiology. Key aspects to improve are data processing algorithms to deal with the vast amount of generated data, and manufacturing of the electrode array itself.