We aimed to investigate the value of magnetic resonance imaging (MRI)-based parameters in differentiating between progressive massive fibrosis (PMF) and lung cancer. This retrospective study included 60 male patients (mean age, 67.0±9.0 years) with a history of more than 10 years working in underground coal mines who underwent 1.5 T MRI of thorax due to a lung nodule/mass suspicious for lung cancer on computed tomography. Thirty patients had PMF, and the remaining ones had lung cancer diagnosed histopathologically. The sequences were as follows: coronal single-shot turbo spin echo (SSH-TSE), axial T1- and T2-weighted spin-echo (SE), balanced turbo field echo, T1-weighted high-resolution isotropic volume excitation, free-breathing and respiratory triggered diffusion-weighted imaging (DWI). The patients' demographics, lesion sizes, and MRI-derived parameters were compared between the patients with PMF and lung cancer. Apparent diffusion coefficient (ADC) values of DWI and respiratory triggered DWI, signal intensities on T1-weighted SE, T2-weighted SE, and SSH-TSE imaging were found to be significantly different between the groups (p < 0.001, for all comparisons). Median ADC values of free-breathing DWI in patients with PMF and cancer were 1.25 (0.93-2.60) and 0.76 (0.53-1.00) (× 10-3 mm2/s), respectively. Most PMF lesions were predominantly iso- or hypointense on T1-weighted SE, T2-weighted SE, and SSH-TSE, while most malignant ones predominantly showed high signal intensity on these sequences. MRI study including SE imaging, specially T1-weighted SE imaging and ADC values of DWI can help to distinguish PMF from lung cancer.
Read full abstract