ObjectiveThis study aimed to investigate the underlying regulatory effects of methionine enkephalin (MENK) on osteosarcoma. MethodsThe Cell Counting Kit-8 assay, clone formation, wound healing, transwell assay, and flow cytometry were performed to measure the effects of MENK on the proliferation, migration, invasion, and apoptosis of MG-63 and Saos-2 cells. Opiate growth factor receptor expression (OGFr) in cells was stably knocked down using siRNA. A tumor model was established by inoculating MG-63 cells into mice. Flow cytometry was performed to identify alterations in mice bone marrow, spleen, and tumor tissue immune cells. The phenotype of tumor-associated macrophages was determined using immunohistochemistry. After OGFr knockdown or/and treatment with MENK, Bax, Bcl-2, caspase 3, caspase 9, and PARP expression levels were characterized using qRT-PCR, western blot, and WES, respectively. ResultsMENK could significantly inhibit the proliferation, invasion, and migration of MG-63 and Saos-2, arrest the cell cycle in the G0/G1 phase, upregulate Bax, caspase 3, caspase 9, and PARP expression, and downregulate Bcl-2 expression. Tumor size and weight were lower in the MENK group than those in the control group. MENK-treated mice exhibited a reduced ratio of CD11b + Gr-1 + myeloid-derived suppressor cells. MENK increased the ratio of M1-type macrophages and decreased the proportion of M2-type macrophages in tumor tissue. Furthermore, the level of TNF-α significantly increased while that of IL-10 decreased in MENK-treated mice. The effect of MENK could be partly reversed by OGFr knockdown. ConclusionMENK reduces the abundance of myeloid-derived suppressor cells, induces M1 polarization of macrophages, and exhibits an inhibitory effect on osteosarcoma.