Subarachnoid hemorrhage (SAH) has high mortality. Early brain injury (EBI) is responsible for unfavorable outcomes for patients with SAH. The protective involvement of autophagy in hemorrhagic stroke has been proposed. The transcription factor EB (TFEB) can increase autophagic flux by promoting autophagosome formation and autophagosome-lysosome fusion, and dysregulation of TFEB activity might induce the development of several diseases. However, the biological functions of TFEB in EBI after SAH remain unknown. We established an animal model of SAH by the modified endovascular perforation method. Expression of TFEB and autophagy required genes was measured by western blotting and immunofluorescence staining. SAH grading, brain water content and neurobehavioral functions were evaluated at 24h post-SAH. Neuronal apoptosis in cerebral cortex was assessed by TUNEL staining and Fluoro Jade B staining. TFEB was downregulated in SAH rats, and its overexpression reduced brain edema and ameliorated neurological deficits of SAH rats. Additionally, the neuronal apoptosis induced by SAH was inhibited by TFEB overexpression. Moreover, TFEB overexpression promoted autophagy after SAH. TFEB overexpression promotes autophagy to inhibit neuronal apoptosis, brain edema and neurological deficits post-SAH.
Read full abstract