ABSTRACT Silicon (Si) is a versatile nutrient that plays an instrumental role in mitigating biotic and abiotic stresses besides improving growth and yield of graminaceous crops. We hypothesized that application Si would significantly improve productivity and resilience of wheat. Hence, the objectives were a) to assess the impact of Si application on wheat growth, productivity, nutrient uptake, water use efficiency, and b) to determine the potentiality of Si in mitigating lodging and aphid density. Therefore, we conducted a field experiment with five levels of Si (0, 2, 4, 6, and 8 g Si liter−1) at three growth stages (crown root initiation, tillering, and jointing stage) using a factorial randomized block design replicated three times. The results showed that increasing Si doses positively influenced plant height, dry matter accumulation (DMA), leaf area index (LAI), yield, and nutrient uptake. The highest grain and straw yield were observed with 8 g Si liter−1, followed by 6 g Si liter−1, while the control had the lowest yields. With 8 g Si liter−1, grain yield, straw yield, and Si uptake increased by 10.5%, 13.5%, and 26.3%, respectively, compared to the control. Additionally, Si application at 8 g Si liter−1 significantly reduced the density of S. avenae (aphids) by 81.4% and lodging by 75.1% compared to the control. Overall, the study demonstrated that increasing Si doses enhanced various growth and yield parameters, with 8 g Si liter−1 and 6 g Si liter−1 showing superior results. Among the growth stages, foliar application of Si during the tillering stage exhibited better performance in terms of growth, yield, and nutrient uptake in wheat. Therefore, the study concludes that Si fertilization at a rate of 8 g Si liter−1 during the tillering stage can effectively improve growth, productivity, and nutrient uptake in wheat in the southern region of Rajasthan.