Aphids and ants are mutualistic species with a close space-time relationship, which may facilitate the occurrence of horizontal transfer events between these insect groups. Myrmar-like mariner elements were previously isolated from two ant (Myrmica ruginodis and Tapinoma ibericum) and two aphid species (Aphis fabae and Aphis hederae). The aim of this work is to determine the presence of Myrmar-like mariner elements in new ant and aphid species, as well as to analyze the likelihood of horizontal transfer events between these taxa. To accomplish this, the Myrmar-like element has been isolated from five aphid species and six ant species. Among these new analyzed species, full-length Myrmar-like mariner elements with very high sequence similarity have been isolated from the aphids Aphis nerii, Aphis spiraecola, Brachycaudus cardui, and Rhopalosiphum maidis as well as from the ants Lasius grandis and Lasius niger, even though aphids and ants belong to two insect orders (Hemiptera and Hymenoptera) that have evolved independently for at least 300 million-years. Both Lasius species establish frequent mutualistic relationships with multiple aphid species, including A. nerii, A. spiraecola, and B. cardui. The study of the putative protein encoded by them and the phylogenetic analysis suggests that they could be active transposons shared by aphids and ants through horizontal transfer events. Additionally, mariner elements with internal deletion were found in several aphids and one ant species, showing a high degree of sequence similarity among them. The characteristics of these elements with internal deletion suggest a complex origin involving various evolutionary processes, possibly including also horizontal transfer events. Myrmar-like elements have also been isolated from the other ant species, although without similarity with the aphid mariner sequences. Myrmar-like elements are also present in phylogenetically distant insect species, as well as in one crustacean species. The phylogenetic study carried out with all Myrmar-like elements suggests the probable occurrence of horizontal transfer events.
Read full abstract