Among the symptoms of Parkinson's disease (PD), apathy comprises a set of behavioral, affective, and cognitive features that can be classified into several subtypes. However, the pathophysiology and brain regions that are involved in these different apathy subtypes are still poorly characterized. We examined which subtype of apathy is elicited in a mouse model of PD with 6-hydroxydopamine (6-OHDA) lesions and the behavioral symptoms that are exhibited. Male C57/BL6J mice were allocated to sham (n = 8) and 6-OHDA (n = 13) groups and locally injected with saline or 4 µg 6-OHDA bilaterally in the dorsal striatum. We then conducted motor performance tests and apathy-related behavioral experiments. We then pathologically evaluated tyrosine hydroxylase (TH) immunostaining. The 6-OHDA group exhibited significant impairments in motor function. In the behavioral tests of apathy, significant differences were observed between the sham and 6-OHDA groups in the hole-board test and novelty-suppressed feeding test. The 6-OHDA group exhibited impairments in inanimate novel object preference, whereas social preference was maintained in the three-chamber test. The number of TH+ pixels in the caudate putamen and substantia nigra compacta was significantly reduced in the 6-OHDA group. The present mouse model of PD predominantly showed dorsal striatum dopaminergic neuronal loss and a decrease in novelty seeking as a symptom that is related to the cognitive apathy component.