Adolescents are at relatively high-risk for developing anxiety, particularly social anxiety. A primary hallmark of social anxiety is the impulse to avoid situations that introduce risk. Here, we examined the neural and behavioral correlates of risk avoidance in adolescents (N=59) 11 to 19 years of age. The Balloon Risk Avoidance Task was used with concurrent electroencephalography to measure event-related potentials (frontal P2; late slow-wave; N2, feedback-related negativity, FRN; posterior P3) and oscillatory dynamics (midfrontal theta, 4–7 Hz) in response to unsuccessful and successful risk avoidance conditions. Social anxiety was measured using the Social Phobia and Anxiety Inventory for Children. Results indicated that, across the whole sample, youth exhibited smaller P3, larger FRN, and larger theta responses to unsuccessful risk avoidance. Youth reporting high (compared to low) levels of social anxiety exhibited larger P2, slow-wave, and FRN responses to unsuccessful, compared to successful, risk avoidance. Further, greater social anxiety was associated with reduced theta responses to successful avoidance. Youth with higher levels of social anxiety showed smaller theta responses to both conditions compared to those with low levels of social anxiety. Taken together, the ERP-component differences and weakened theta power in socially anxious youth following unsuccessful avoidance are informative neural correlates for socially anxious youth during risk avoidance.