What is the central question of this study? Arachidonic acid (AA) stimulates NO production in antral mucous cells without any increase in [Ca2+ ]i . Given that the intracellular AA concentration is too low to measure, the relationship between AA accumulation and NO production remains uncertain. Is AA accumulation a key step for NO production? What is the main finding and its importance? We demonstrated that AA accumulation is a key step for NO production. The amount of AA released could be measured using fluorescence-HPLC. The intracellular AA concentration was maintained at <1μM. Nitric oxide is produced by AA accumulation in antral mucous cells, not as a direct effect of [Ca2+ ]i . In the present study, we demonstrate that NO production is stimulated by an accumulation of arachidonic acid (AA) mediated via peroxisome proliferation-activated receptorα (PPARα) and that the NO produced enhances Ca2+ -regulated exocytosis in ACh-stimulated antral mucous cells. The amount of AA released from the antral mucosa, measured by fluorescence high-performance liquid chromatography (F-HPLC), was increased by addition of ionomycin (10 μM) or ACh, suggesting that AA accumulation is stimulated by an increase in [Ca2+ ]i . The AA production was inhibited by an inhibitor of cytosolic phospholipaseA2 (cPLA2-inhα). GW6471 (a PPARα inhibitor) and cPLA2-inhα inhibited NO synthesis stimulated by ACh. Moreover, indomethacin, an inhibitor of cyclooxygenase, stimulated AA accumulation and NO production. However, acetylsalicylic acid did not stimulate AA production and NO synthesis. An analogue of AA (AACOCF3) alone stimulated NO synthesis, which was inhibited by GW6471. In antral mucous cells, indomethacin enhanced Ca2+ -regulated exocytosis by increasing NO via PPARα, and the enhancement was abolished by GW6471 and cPLA2-inhα. Thus, AA produced via PLA2 activation is the key step for NO synthesis in ACh-stimulated antral mucous cells and plays important roles in maintaining antral mucous secretion, especially in Ca2+ -regulated exocytosis.
Read full abstract