Ethnopharmacology relevanceSaffron is a valued herb, obtained from the stigmas of the C.sativus Linn (Iridaceae). Pharmacopoeias have described it as having a variety of actions, such as stimulant, anti-carcinogen, and anti-depressant. As a folk medicine, crocin has been reported to have anti-cardiotoxicity and anti-hepatotoxicity effects. This paper focuses on crocin, one of the bioactive molecules found in saffron that are known to have therapeutic effects. Crocin has been shown in numerous experimental studies to be beneficial in treating depression, however, there aren't many studies on its neurotoxicity. Aim of the studyApplications of arsenic trioxide (ATO) in medical settings is limited by its side effects. This study aims to examine crocin's protective effect against ATO-induced neurotoxicity and understand its potential molecular mechanism. Materialandmethods: A neurotoxicity model was created by administering ATO (4 mg/L/d). To counteract this, mice were intraperitoneally injected with crocin (100, 200 mg/kg/d). After 60 days, biochemical, histopathological, transmission electron microscopy, ELISA, and western blotting analyses were then performed. ResultsOur results indicated that crocin decreased neuronal death and loss caused by ATO, countered oxidative stress damage, and mitigated pro-inflammatory cytokines. Mice treated with crocin also displayed positive signs of brain tissue recovery. Additionally, crocin reduced the protein expressions of NLRP1, apoptosis-associated speck-like protein containing a CARD (ASC), Caspase-1, GRP78, CHOP, and ATF4. ConclusionsThis study attests that crocin can reduce ATO-induced neurotoxicity by safeguarding nerves from oxidative stress, inflammation, and apoptosis, possibly through the activation of the Nrf2/HO-1 signaling pathway.