Genetic susceptibility of the SJL mouse to experimental autoimmune encephalomyelitis (EAE) appears, in part, to be a result of genes that promote abnormal development of the pathogenic Type 1 (Th1) phenotype of neuroantigen-specific T-cells. Because antigen-presenting/accessory cells (APCs) produce cytokines that can modulate the development of Th1 and Th2 phenotypes, we addressed whether APCs from SJL mice were genetically programmed for elevated expression of the Th1-promoting cytokine, IL-12. Activated peritoneal macrophages (Mphi; i.e., APC) from naïve SJL mice produced levels of TNF-alpha, IL-1, IL-6, IL-10, and TGF-beta within the range of six normal strains. In contrast, SJL IL-12p40 (in addition to IL-12p70) production was consistently five- to 20-fold greater than that of any normal strain tested, which arose from elevated expression of the IL-12p40 but not the IL-12p35 gene, because p40 mRNA levels were eight- to 15-fold greater than those of normal strains. This aberrancy in IL-12p40 expression appears identical to that observed in the NOD mouse, another strain prone to organ-specific autoimmunity. A genetically programmed bias toward elevated expression of IL-12 in Mphi from the SJL and NOD strains of autoimmunity provides a conserved mechanism for the dominant Th1 development of naive, autoantigen-specific T-cells in these strains. This study is the first demonstration of a genetically programmed aberrant phenotype that is intrinsically expressed within a cell type in the SJL mouse and provides insight into its predisposition for EAE.