Previous studies have investigated the characteristics and influencing factors of plume bulge in the Pearl River Estuary (PRE) using observations and numerical simulations. However, the understanding of how river discharge affects plume bulge is not consistent, and the response mechanism of plume bulge to changes in river discharge has not been revealed in detail. In this study, a three-dimensional hydrodynamic Finite-Volume Coastal Ocean Model (FVCOM) is constructed, and five experiments were set to characterize the horizontal and vertical distribution of the plume bulge outside the PRE under different river discharge conditions during spring tide. The physical mechanisms of plume bulge generation and its response mechanisms to river discharge were discussed through standardized analysis and momentum diagnostic analysis. The results indicate that the plume bulge is sensitive to changes in river discharge. When the river discharge is relatively low (e.g., less than 11,720 m3/s observed in the dry season), the bulge cannot be formed. Conversely, when the river discharge is relatively high (e.g., exceeding 23,440 m3/s observed in flood season), the bulge is more significant. The plume bulge is formed by the anticyclonic flow resulting from the action of the Coriolis force on the strongly mixed river plume. The bulge remains stable under the combined effects of barotropic force, baroclinic gradient force, and Coriolis force. The reduction of river discharge weakens the mixing of freshwater and seawater, resulting in the reduction of both the volume and momentum of the river plume, and the balance between advective diffusion and Coriolis forces are altered, resulting in the plume, which is originally flushed out from the Lantau Channel, not being able to maintain the anticyclonic structure and instead floating out along the coast of the western side of the PRE, with the disappearance of the plume bulge. Due to the significant influence of plume bulges on the physical and biogeochemical interactions between estuaries and terrestrial environments, studying the physical mechanisms behind the formation of plume bulges is crucial.
Read full abstract