Cellulose nanofibers (CNF) derived from kenaf plant were combined with curcumin (Cur)-metal complexes to produce regenerated composite films. Cur was used to synthesize homoleptic Cur-metal complexes with diamagnetic Zn(II) and paramagnetic Cu(II) metal ions. Cur-Zn(II) complex and Cur-Cu(II) complex were synthesized under the same reaction conditions to check the synergistic effect of engaging the diketone electrons of Cur with strong coordination bonds with two different metal ions. The synthesized Cur-metal complexes were used as fillers to produce CNF composite films for biodegradable food packaging film. Results showed that the Cur-Zn(II) complex-loaded CNF composite films exhibit higher antioxidant activity than other films whereas Cur-Cu(II) complex-loaded CNF composite films showed prominent antibacterial activity against foodborne pathogenic bacteria such as Listera monocytogenes and Escherichia coli. It is due to the coordination of the diketone electron of Cur with diamagnetic and paramagnetic metal ions that influenced the antioxidant and antibacterial properties of Cur. Overall, this study proved that it was possible to use Cur in the form of Cur-Zn(II) complex as an antioxidant filler and Cur-Cu(II) complex as an antibacterial filler for active food packaging applications.
Read full abstract