Affinity maturation of the antibody response, a process of antibody affinity increasing over response, is one of the key features of the mammalian immune system. However, the process is incompletely understood in teleost, including channel catfish (Ictalurus punctaus). In this study, IgM affinity maturation in channel catfish was investigated by estimating the kinetics of antibody affinity using ELISA and ELISPOT assays. Fish were immunized with a T-cell dependent antigen (TNP-KLH), and individual serum IgM antibody titers and affinities, and IgM+ antibody-secreting cells (ASCs) in peripheral blood were analyzed over a period of 14 weeks. A detectable serum anti-TNP response developed by 2-weeks post-immunization, and the maximal antibody production was observed by 6-weeks post-immunization. The average affinity of anti-TNP serum antibody increased consistently and reached the maximum by 10-weeks post-immunization. The increase of antibody affinity beyond the point of optimal antibody titer revealed that the affinity maturation of IgM antibody response occurred in channel catfish. Dissection of dynamics of individual affinity subpopulations indicated that a significant proportion of low affinity subpopulations appeared at early response, and high affinity subpopulations appeared predominantly at later, resulting in a 100-fold increase in affinity over response. Additional, TNP+ IgM+ ASCs was detected by 2-weeks post-immunization and achieved the maximal number by 6-weeks post-immunization. Using an inhibition ELISPOT assay, the findings of a consistent increase in the average affinity of secreted IgM antibody by peripheral blood ASCs, as the immune response progressed, confirmed the occurrence of the affinity maturation. Taken together, the results of this study indicated that affinity maturation occurred in channel catfish following immunization with a TD antigen TNP-KLH.
Read full abstract