Flat heat pipes (FHPs) could be an innovative solution for thermal management in aerospace applications; without the aid of gravity, FHPs could still transport high density energy fluxes with superior temperature control and almost zero energy consumption. Inspired by the powerful transpiration and liquid transport ability of leaf vein structure of plants, a novel FHP design with bionic grading evaporator structured surface was proposed. In addition, a bi-directional transport capillary structure was built inside this FHP, reducing the vapor–liquid flow path and enhancing condensed liquid return simultaneously, and thereafter promoting phase change intensity of FHPs. In the present research, heat transfer performance of FHP with self-wetting fluid as a coolant has been experimentally investigated under anti-gravity, concerning on heat inputs, filling ratios, diameter ratios, porosities of hybrid capillary wick, and two representative tree-like evaporator plate structures (H type and Y type). Our experimental results indicated that heat transfer capability of FHP showed a minimal temperature difference, which was suitable for multi-gravity working conditions. Interestingly, minimal thermal resistance value of 0.45 ℃/W and average enhancement ratio in heat transfer coefficient of 56.39% were achieved simultaneously at anti-gravity orientations for a novel FHP with the 70 PPI and αMF = 0.2 of hybrid capillary wick. Superior vapor flow and diffusion and permeability capability of FHP were further obtained as filling ratio of 30%. Moreover, due to the Marangoni effect, the addition of SRWFs could reduce the axial and radial thermal resistance of the FHP by 5–7 % under anti-gravity condition. Compared with traditional heat sink, the novelty of this passive heat transfer application was capable for realizing high heat transport performance for aerospace flights and applications.
Read full abstract