• Hawthorn polyphenol microcapsule (HPM) extract improves thermal processing stability. • HPM reduces oxidative stress and inflammation in fatigued mice. • HPM improves substrate and energy metabolism in fatigued mice. • HPM alleviates fatigue in mice through AMPK pathway. • HPM improves diversity of intestinal flora in fatigued mice. This study prepared hawthorn polyphenol microcapsules (HPM) by microencapsulation and revealed that its potential mechanism of action in fatigued mice involves regulation of AMPK signaling pathway and balancing the intestinal microflora. Spray drying process improved thermal stability of hawthorn polyphenol. After HPM treatment, the weight-bearing swimming ability of fatigued mice was significantly improved (p < 0.05). HPM can effectively improve skeletal muscle substrate consumption and product metabolism and enhance antioxidant capacity (p < 0.05 or p < 0.01). Supplementation with HPM can provide energy through regulation of the PI3K/AKT/GSK-3Β pathway. HPM activated the AMPK pathway (p < 0.05 or p < 0.01) to improve mitochondrial dysfunction and cell metabolism and inhibited the NF-κB inflammatory pathway (p < 0.05) in fatigued mice. In addition, HPM can exhibit an anti-fatigue effect by improving the diversity of gut microbial species. Therefore, HPM can be used as a potential anti-fatigue nutritional supplement in functional foods to alleviate exercise fatigue.
Read full abstract