Anemia is a widespread global health concern necessitating effective, accessible, and natural interventions. The potential of medicinal plants to address anemia has garnered significant interest. Among these plants, parsley (Petroselinum crispum (Petroselinum crispum) L.) stands out as an edible and herbal-based option for combating anemia. Aim of the study: This study investigated the potential of P. crispum (PC-Ext) as an emerging antianemic product, focusing on its physicochemical attributes, antioxidant properties, and mineral profile. Both qualitative and quantitative analyses of the phenolic compounds in P. crispum were conducted by using high-performance liquid chromatography with a diode array detector (HPLC-DAD). Anemia was induced in rats by intravenous injections of phenylhydrazine, administered at a dose of 40 mg/kg for two consecutive days. The antianemic activity of PC-Ext was assessed at a dose of 500 mg/kg twice daily for 5 weeks by estimating blood parameters, such as serum iron and ferritin. Additionally, the osmotic fragility test measured the capacity of red blood cells to withstand osmotic shock of various concentrations of saline. Aqueous extract of P. crispum was rich in phytochemical compounds, including syringic acid, quercetin, catechin, gallic acid, and luteolin. The findings demonstrate the effectiveness of P. crispum in ameliorating phenylhydrazine-induced reductions in red blood cell count (RBCs), hemoglobin (Hb), and hematocrit (HCT) levels. Consequently, PC-Ext exhibits significant activity against phenylhydrazine-induced anemia in rats, as demonstrated by its ability to prevent hemolysis. Iron estimation within PC-Ext further confirms its utility in addressing both iron deficiency and ferritin-deficiency anemia. Therefore, PC exhibits a favorable effect against both types of anemia, iron deficiency, and hemolysis. The results of this study provide robust scientific validation for ethnomedicinal use and the potential utility of P. crispum, positioning it as a promising source for future pharmaceutical development.
Read full abstract