Mango (Mangifera indica L.) is one of the world's most significant economic fruit crops, and China is the second-largest producer of mango (Kuhn et al., 2017). Postharvest mango anthracnose is caused by Colletotrichum species and reduce the self-life of mature fruit (Wu et al., 2020). Colletotrichum species also cause postharvest anthracnose and fruit rot disease of Apple, Banana and Avocado (Khodadadi et al., 2020; Vieira et al., 2017; Sharma et al., 2017). In July 2019, mango fruits cv. 'Jin-Hwang' were observed at different fruit markets (39°48'42.1"N 116°20'17.0"E) of the Fengtai district, Beijing, China, exhibiting typical symptoms of anthracnose including brown to black lesions in different size (≤ 2 cm) with identified border on the mango fruit surface. Later, the lesions were coalesced and extensively cover the surface area of the fruit. The lesions were also restricted to peel the fruit and pathogen invaded in the fruit pulp. About 30% of mango fruits were affected by anthracnose disease. The margins of lesions from infected mango fruits (n=56) were cut into 2 × 2 mm pieces, surface disinfected with NaClO (2% v/v) for 30 s, rinsed thrice with distilled water for 60s. These pieces were placed on PDA medium and incubated at 25°C for 7 days. Pure culture of fungal isolates was obtained by single spore isolation technique. Initially, the fungal colony was off white, and colony extended with time, turning light gray at the center. The morphological examination revealed that conidia were hyaline, oblong, and unicellular. The conidia were measured from 10 days old culture and dimensions varied from 13.3 to 15.8 µm in length and 4.6 to 6.1 µm in width. For molecular identification, a multi-locus sequence analysis; the Internal Transcribed Spacers (ITS) region, partial actin (ACT) gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene and chitin synthase (CHS-1) gene were amplified by using the primer sets ITS1/4 (White et al. 1990), ACT-512F/ACT-783R (Carbone and Kohn 1999), GDF1/GDR1 (Guerber et al. 2003) and CHS1-79F/CHS-1-354R (Carbone and Kohn 1999) respectively. The partial sequences of MTY21 were deposited to GenBank accessions (MT921666 (ITS), MT936119 (ACT), MT936120 (GAPDH) and MT936118 (CHS-1). All obtained sequences showed 100% similarity with reported sequences of Colletotrichum alienum ICMP.18691 with accessions numbers JX010217 (ITS), JX009580 (ACT), JX010018 (GAPDH) and JX009754 (CHS-1) which represented the isolate MTY21 identified as C. alienum by constructing Maximum Likelihood phylogenetic tree analysis using Mega X (Kumar et al., 2018). For the confirmation of Koch's postulates, the pathogenicity test was conducted on 36 fresh healthy mango fruits for each treatment. Fruits were punctured with the help of a sterilized needle to create 2mm2 wounds and inoculated with 10µL inoculum (107 spores/mL) of MTY21. Control mango fruits were inoculated with 10µL sterilized distilled water and incubated at 25 °C with 90% relative humidity. The lesions appeared at the point of inoculation and gradually spread on the fruit surface after 7 days post inoculation. The symptoms were similar to the symptoms on original fruit specimens. The re-isolated fungus was identified as C. alienum based on morphological and molecular analysis. Mango anthracnose disease caused by several Colletotrichum species has been reported previously on mango in China (Li et al., 2019). Liu et al. (2020) reported C. alienum as the causal organism of anthracnose disease on Aquilaria sinensis in China. C. alienum has been previously reported causing mango anthracnose disease in Mexico (Tovar-Pedraza et al., 2020) To our knowledge, this is the first report of C. alienum causing postharvest anthracnose of mango in China. The prevalence of C. alienum was 30% on mango fruit which reflects the importance of this pathogen as a potential problem of mango fruit in China.
Read full abstract