ObjectivesThe study investigated whether a dose response exists between myocardial salvage and the depth of therapeutic hypothermia. BackgroundCardiac protection from mild hypothermia during acute myocardial infarction (AMI) has yielded equivocal clinical trial results. Rapid, deeper hypothermia may improve myocardial salvage. MethodsSwine (n = 24) undergoing AMI were assigned to 3 reperfusion groups: normothermia (38°C) and mild (35°C) and moderate (32°C) hypothermia. One-hour anterior myocardial ischemia was followed by rapid endovascular cooling to target reperfusion temperature. Cooling began 30 min before reperfusion. Target temperature was reached before reperfusion and was maintained for 60 min. Infarct size (IS) was assessed on day 6 using cardiac magnetic resonance, triphenyl tetrazolium chloride, and histopathology. ResultsTriphenyl tetrazolium chloride area at risk (AAR) was equivalent in all groups (p = 0.2), but 32°C exhibited 77% and 91% reductions in IS size per AAR compared with 35°C and 38°C, respectively (AAR: 38°C, 45 ± 12%; 35°C, 17 ± 10%; 32°C, 4 ± 4%; p < 0.001) and comparable reductions per LV mass (LV mass: 38°C, 14 ± 5%; 35°C, 5 ± 3%; 32°C 1 ± 1%; p < 0.001). Importantly, 32°C showed a lower IS AAR (p = 0.013) and increased immunohistochemical granulation tissue versus 35°C, indicating higher tissue salvage. Delayed-enhancement cardiac magnetic resonance IS LV also showed marked reduction at 32°C (38°C: 10 ± 4%, p < 0.001; 35°C: 8 ± 3%; 32°C: 3 ± 2%, p < 0.001). Cardiac output on day 6 was only preserved at 32°C (reduction in cardiac output: 38°C, –29 ± 19%, p = 0.041; 35°C: –17 ± 33%; 32°C: –1 ± 28%, p = 0.041). Using linear regression, the predicted IS reduction was 6.7% (AAR) and 2.1% (LV) per every 1°C reperfusion temperature decrease. ConclusionsModerate (32°C) therapeutic hypothermia demonstrated superior and near-complete cardioprotection compared with 35°C and control, warranting further investigation into clinical applications.