In the early avian embryo, the developing heart forms when bilateral fields of cardiac progenitor cells, which reside in the lateral plate mesoderm, move toward the embryonic midline, and fuse above the anterior intestinal portal (AIP) to form a straight, muscle-wrapped tube. During this process, the precardiac mesoderm remains in close contact with the underlying endoderm. Previous work has shown that the endoderm around the AIP actively contracts to pull the cardiac progenitors toward the midline. The morphogenetic deformations associated with this endodermal convergence, however, remain unclear, as do the signaling pathways that might regulate this process. Here, we fluorescently labeled populations of endodermal cells in early chicken embryos and tracked their motion during heart tube formation to compute time-varying strains along the anterior endoderm. We then determined how the computed endodermal strain distributions are affected by the pharmacological inhibition of either myosin II or fibroblast growth factor (FGF) signaling. Our data indicate that a mediolateral gradient in endodermal shortening is present around the AIP, as well as substantial convergence and extension movements both anterior and lateral to the AIP. These active endodermal deformations are disrupted if either actomyosin contractility or FGF signaling are inhibited pharmacologically. Taken together, these results demonstrate how active deformations along the anterior endoderm contribute to heart tube formation within the developing embryo.
Read full abstract