Ansamitocin P-3 (AP-3) shows strong anticancer effects and has used as a payload for antibody-drug conjugates. Our previous study have shown that although genetically engineered Actinosynnema pretiosum strains with enhanced UDP-glucose (UDPG) biosynthesis displayed improved AP-3 production compared to the wild-type strain, the increase in yield was far from meeting the industrial demand. In this study, comparative metabolomics analysis complemented with quantitative real-time PCR analysis was performed for the wild-type strain and two mutants (OpgmOugp, ΔzwfΔgnd) to identify possible metabolic bottlenecks and non-intuitive targets for further enhancement of AP-3 production. We observed that enhancing intracellular UDPG availability facilitated the accumulation of intracellular N-demethyl-AP-3 and AP-3, where the transporting of them outside the cell still needs to be developed. We also found that the UDPG biosynthesis was closely associated with the availability of fructose in the medium and a suitable fructose feeding strategy could promote the further improvement of AP-3 titer. In addition, pathway abundance analysis revealed that undesired fatty acid accumulation and down-regulation of amino acid metabolism may be unfavorable for ansamitocin biosynthesis in later stage of production. These results indicate that genetic modification of the UDPG biosynthetic pathways may have pleiotropic effects on AP-3 production. Efforts must be made to eliminate these newly identified metabolic bottlenecks to boost AP-3 production in A.pretiosum.
Read full abstract