It is clear from modern analogue studies that O2-deficient conditions favor preservation of organic matter (OM) in fine-grained sedimentary rocks (black shales). It is also clear that appreciable productivity and OM flux to the sediment are required to establish and maintain these conditions. However, debates regarding redox controls on OM accumulation in black shales have mainly focused on oxic versus anoxic conditions, and the implications of different anoxic redox states remain unexplored. Here, we present detailed multi-proxy sedimentary geochemical studies of major Paleozoic and Mesozoic North American black shale units to elucidate their depositional redox conditions. This is the first broad-scale study to use a consistent geochemical methodology and to incorporate data from Fe-speciation – presently the only redox proxy able to clearly distinguish anoxic depositional conditions as ferruginous (H2S-limited) or euxinic (H2S-replete, Fe-limited). These data are coupled with total organic carbon (TOC), programmed pyrolysis, and redox-sensitive trace element proxies, with almost all measurements analyzed using the same geochemical methodology. Consistent with expectations based on previous geochemical and paleontological/ichnological studies, these analyses demonstrate that the study units were almost exclusively deposited under anoxic bottom waters. These analyses also demonstrate that there is wide variance in the prevalence of euxinic versus ferruginous conditions, with many North American black shale units deposited under predominantly ferruginous or oscillatory conditions. TOC is significantly higher under euxinic bottom waters in analyses of both preserved (present day) TOC and reconstructed initial TOC values, although sediments deposited under both redox states do have economically viable TOC content. While this correlation does not reveal the mechanism behind higher organic enrichment in euxinic environments, which may be different in different basins, it does open new research avenues regarding resource exploration and the biogeochemistry of ancient reducing environments.