Vehicular ad-hoc networks (VANETs) can significantly improve the level of urban traffic management. However, the sender unlinkability has become an intricate issue in the field of VANETs’ encryption. As the sender signcrypts a message, the receiver has to use the sender’s identity or public key to decrypt it. Consequently, the sender can be traced using the same identity or public key, which poses some security risks to the sender. To address this issue, we present an unlinkable and revocable signcryption scheme (URSCS), where an efficient and powerful signcryption mechanism is adopted for communication. The sender constructs a polynomial to generate a unique session key for each communication, which is then transmitted to a group of receivers, enabling the same secret message to be sent to multiple receivers. Each time a secret message is sent, a new key pair is generated, and an anonymization mechanism is introduced to conceal the true identity of the vehicle, thus preventing malicious attackers from tracing the sender through the public key or the real identity. With the introduction of the identification public key, this scheme supports either multiple receivers or a single receiver, where the receiver can be either road side units (RSUs) or vehicles. Additionally, a complete revocation mechanism is constructed with extremely low communication overhead, utilizing the Chinese remainder theorem (CRT). Formal and informal security analyses demonstrate that our URSCS scheme meets the expected security and privacy requirements of VANETs. The performance analysis shows that our URSCS scheme outperforms other represented schemes.
Read full abstract