The security issues in Vehicle Ad Hoc Networks (VANETs) are prevalent within Intelligent Transportation Systems (ITS). To ensure the security of vehicle-to-infrastructure (V2I) communication, extensive research on V2I authentication has been conducted in recent years. However, these protocols often overlook the limitations of communication range, leading to failures in V2I communication. Consequently, addressing the challenge of secure V2I communication in areas not covered by distributed roadside units (RSUs) remains a significant task. To address these issues, the current study proposes an Anonymous Certificate-less Hybrid Mutual Authentication Protocol (ACHMAP) based on Vehicle-to-Vehicle-to-Infrastructure (V2V2I) communication. In the proposed protocol, a secure multi-hop link is established through vehicle-to-vehicle (V2V) mutual one-time token authentication. Subsequently, the out-of-coverage vehicle and relevant RSUs complete V2I mutual authentication using signcryption messages transmitted by vehicle nodes. In the security analysis, it is demonstrated that the entire V2V2I stage can resist various security attacks, such as replay attacks, impersonation attacks, and threats to user anonymity, while preserving confidentiality and integrity. We simulated the proposed protocol using Network Simulator 3 (NS-3) to confirm that the authentication mechanism has lower overhead and minimal authentication delay in V2V2I communication.
Read full abstract