Mitigating uranium transport in groundwater is imperative for ensuring access to clean water across the globe. Here, in situ resonant anomalous X-ray reflectivity is used to investigate the adsorption of uranyl on alumina (012) in acidic aqueous solutions, representing typical UVI concentrations of contaminated water near mining sites. The analyses reveal that UVI adsorbs at two distinct heights of 2.4-3.2 and 5-5.3 Å from the surface terminal oxygens. The former is interpreted as the mixture of inner-sphere and outer-sphere complexes that adsorb closest to the surface. The latter is interpreted as an outer-sphere complex that shares one equatorial H2O with the terminal surface oxygen. With increasing pH, we observe an increasing prevalence of these outer-sphere complexes, indicating the enhanced role of the hydrogen bond that stabilizes adsorbed uranyl species. The presented work provides a molecular-scale understanding of sorption of uranyl on Al-based-oxide surfaces that has implications for environmental chemistry and materials science.
Read full abstract