Ophthalmic drugs are administered to the front of the eye by eyedrops. The bioavailability of drugs delivered via eye drops is low due to tear turnover. Contact lenses can address some deficiencies of eye drops by sustaining the delivery of drugs, but commercial contact lenses have small pore sizes that cannot load biologics, which are becoming more common for treating ophthalmic diseases. This study aims to investigate novel poly(hydroxyethyl methacrylate) (pHEMA) lenses with transparent center and porous annulus for sustained release of model proteins. A novel hydrogel polymerization process was used to fabricate concentric, porous layer pHEMA hydrogel rods. The hydrogels were lathe cut into contact lenses which were explored for the delivery of proteins and gold nanoparticles. Lenses were characterized by partition coefficient and diffusivity, which was estimated by fitting experimental data to an analytical model. Transmittance measurements were made to compare transparency of porous lens centers to commercial contact lenses. Porous pHEMA lenses consisting of a concentric, porous layer made from 55% water content in precursor were successfully lathe cut into lenses with transparent center and opaque porous annulus. The porous lenses could load large model proteins of bovine serum albumin and human γ-globulin and provide sustained release. The core annular pHEMA contact lenses consisting of an outer annulus of opaque, porous pHEMA and an inner, center layer of clear, nonporous pHEMA can provide sustained delivery of biologics.
Read full abstract