We present novel evidence of environmental drivers of seedling density in Abies nephrolepis, an alpine and subalpine tree species. Continuous monitoring of natural conditions is required to understand forest ecosystem dynamics. We investigated Abies nephrolepis seedling dynamics in relation to biotic and abiotic factors. The survey, which included the measurement of trees and seedlings, was carried out from March to October in 2016 and 2018. Monitoring sites in the coniferous forests of Seorak Mountain were divided into 27 quadrats. We analyzed relationships using simple and multiple linear regression. The majority of Abies nephrolepis individuals had a diameter at breast height less than l0 cm, and the number of seedlings increased over the study period. This reflects survival and growth due to successive annual mast seeding events. Aspect direction (R2 = 0.201, p < 0.05), rock exposure (R2 = 0.364, p < 0.001), canopy openness (R2 = 0.322, p < 0.05), herbaceous cover (R2 = 0.268, p < 0.01), and basal area (R2 = 0.199, p < 0.05) show significant linear relationships with seedling density. Seedling density was positively related to rock exposure, canopy openness, and species richness, and there was a negative relationship between herbaceous cover and basal area (p < 0.0001). The relative importance of predictor variables was as follows: Rock exposure (40.3%), canopy openness (30.2%), basal area (13.9%), herbaceous cover (11.5%), and species richness (4.1%). Seedling density was most strongly influenced by the presence of large rocks, which provide shelter from harsh winds and a substrate for moss. We conclude that appropriate canopy openness creates a synergistic relationship. We found a positive association between the Abies nephrolepis seedling density in subalpine forests and certain physical environmental factors. Therefore, environmental gradients about the roles of rocks and canopies apply, even in this habitat.