The role of forests in providing multiple goods and services has been recognized worldwide. In such a context, reliable spatial predictions of forest attributes such as tree volume and current increment are fundamental for conducting forest monitoring, improving restoration programs, and supporting decision-making processes. This article presents the methodology and the results of the wall-to-wall spatialization of the growing stock volume and the current annual increment measured in 273 plots of data of the Italian National Forest Inventory over an area of more than 3260 km2 in the Friuli Venezia Giulia region (Northeast Italy). To this aim, a random forest model was tested using as predictors 4 spectral indices from Sentinel-2, a high-resolution Canopy Height Model derived from LiDAR, and geo-morphological data. According to the Leave One Out cross-validation procedure, the model for the growing stock shows an R2 and an RMSE% of 0.67 and 41%, respectively. Instead, an R2 of 0.47 and an RMSE% of 57% were obtained for the current annual increment. The validation with an independent dataset further improved the models’ performances, yielding significantly higher R2 values of 0.84 and 0.83 for volume and for increment, respectively. Our results underline a relatively higher importance of LiDAR-derived metrics compared to other covariates in estimating both attributes, as they were even twice as important as vegetation indices for growing stock. Therefore, these metrics are promising for the development of a national LiDAR-based model.