Layered nickel-rich lithium transition-metal oxides (LiNixMnyCo1−x−yO2; where ≥ 0.8), with single-crystalline morphology, are promising future high-energy-density Li-ion battery cathodes due to their ability to mitigate particle-cracking-induced degradation. This is due to the absence of grain boundaries in these materials, which prevents the build-up of bulk crystallographic strain during electrochemical cycling. Compared to their polycrystalline counterparts, there is a need to study single-crystalline Ni-rich cathodes using x-ray methods in uncompromised machine-manufactured industrylike full cells to understand their bulk degradation mechanisms as a function of different electrochemical cycling protocols. This can help us identify factors to improve their long-term performance. Here, through in-house x-ray studies of pilot-line-built LiNi0.8Mn0.1Co0.1O2–graphite A7 pouch cells, it is shown that their electrochemical-capacity fade under harsh conditions (2.5–4.4 V and 40 °C for 100 cycles at a C/3 rate) primarily stems from the high-voltage reconstruction of the cathode surface from a layered to a cubic (rock-salt) phase that impedes the Li+ kinetics and increases cell impedance. Postmortem electron and x-ray microscopy show that these cathodes can withstand severe anisotropic structural changes and show no cracking when cycled under such conditions. Comparing these results to those from commercial Li-ion cells with surface-modified single-crystalline Ni-rich cathodes, it is identified that cathode surface passivation can mitigate this type of degradation and prolong cycle life. In addition to furthering our understanding of degradation in single-crystalline Ni-rich cathodes, this work also accentuates the need for practically relevant and reproducible fundamental investigations of Li-ion cells and presents a methodology for achieving this. Published by the American Physical Society 2024
Read full abstract