In this paper, we establish some $$\varepsilon $$ -regularity criteria in anisotropic Lebesgue spaces for suitable weak solutions to the 3D Navier–Stokes equations as follows: 0.1 $$\begin{aligned}&\limsup \limits _{\varrho \rightarrow 0} \varrho ^{1-\frac{2}{p}-\sum \limits ^{3}_{j=1}\frac{1}{q_{j}}} \Vert u\Vert _{L_{t}^{p}L^{\overrightarrow{q}}_{x}(Q(\varrho ))} \le \varepsilon , ~~\frac{2}{p}+\sum \limits ^{3}_{j=1}\frac{1}{q_{j}} {\le 2}~~~~~\text {with}~q_{j} > 1; \\&\quad \sup _{-1\le t\le 0}\Vert u\Vert _{L^{\overrightarrow{q}}(B(1))} \le \varepsilon ,~~\frac{1}{q_{1}}+\frac{1}{q_{2}}+\frac{1}{q_{3}}<2\quad \text {with}\, 1<q_{j}<\infty ; \\&\Vert u \Vert _{L_{t}^{p}L^{\overrightarrow{q}}_{x}(Q(1))} +\Vert \Pi \Vert _{L^{1}(Q(1))}\le \varepsilon , \quad \frac{2}{p}+\sum ^{3}_{j=1}\frac{1}{q_{j}}<2 ~~~\text {with}~~ 1<q_{j}<\infty , \end{aligned}$$ which extends the previous results in Caffarelli et al. (Commun Pure Appl Math 35:771–831, 1982), Choi and Vasseur (Ann Inst H Poincare Anal Non Lineaire 31:899–945, 2014), Gustafson et al. (Commun Math Phys 273:161–176, 2007), Guevara and Phuc Calc Var 56:68, 2017), He et al. (J Nonlinear Sci 29:2681–2698, 2019), Tian and Xin (Commun Anal Geom 7:221–257, 1999) and Wolf (Ann Univ Ferrara 61:149–171, 2015). As an application, in the spirit of Chae and Wolf (Arch Ration Mech Anal 225:549–572, 2017), we prove that there does not exist a nontrivial Leray’s backward self-similar solution with profiles in $$L^{\overrightarrow{p}}(\mathbb {R}^{3})$$ with $$\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}<2$$ . This generalizes the corresponding results of Chae and Wolf (Arch Ration Mech Anal 225:549–572, 2017), Guevara and Phuc (SIAM J Math Anal 50:541–556, 2017), Necas et al. (Acta Math 176, 283–294, 1996) and Tsai (Arch Ration Mech Anal 143(1):29–51, 1998).
Read full abstract