We consider the following anisotropic sinh-Poisson type equation with a Hardy or Hénon term: 0.1{−div(a(x)∇u)+a(x)u=ε2a(x)|x−q|2α(eu−e−u)in Ω,∂u∂n=0,on Ω,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\left \\{ \ extstyle\\begin{array}{l@{\\quad}l} -\\mathrm{div}(a(x)\ abla u)+ a(x)u=\\varepsilon ^{2}a(x)|x-q|^{2\\alpha}(e^{u}-e^{-u}) &\ ext{in $\\Omega $,} \\\\ \\frac{\\partial u}{\\partial n}=0, &\ ext{on $\\Omega $,} \\end{array}\\displaystyle \\right . $$\\end{document} where ε>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\varepsilon >0$\\end{document}, q∈Ω¯⊂R2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$q\\in \\bar{\\Omega}\\subset \\mathbb{R}^{2}$\\end{document}, α∈(−1,∞)∖N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\alpha \\in (-1,\\infty )\\backslash \\mathbb{N}$\\end{document}, Ω⊂R2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\Omega \\subset \\mathbb{R}^{2}$\\end{document} is a smooth bounded domain, n is the unit outward normal vector of ∂Ω, and anisotropic coefficient a(x)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$a(x)$\\end{document} is a smooth positive function defined on Ω̄. From the finite-dimensional reduction method, we proved that the problem (0.1) has a sequence of sign-changing solutions with arbitrarily many interior spikes accumulating to q, provided q∈Ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$q\\in \\Omega $\\end{document} is a strict local maximizer of a(x)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$a(x)$\\end{document}. However, if q∈∂Ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$q\\in \\partial \\Omega $\\end{document} is a strict local maximum point of a(x)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$a(x)$\\end{document} and satisfies 〈∇a(q),n〉=0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\langle \ abla a(q),n \\rangle =0$\\end{document}, we proved that (0.1) has a family of sign-changing solutions with arbitrarily many mixed interior and boundary spikes accumulating to q.Under the same condition, we could also construct a sequence of blow-up solutions to the following problem {−div(a(x)∇u)+a(x)u=ε2a(x)|x−q|2αeuin Ω,∂u∂n=0,on ∂Ω.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\left \\{ \ extstyle\\begin{array}{l@{\\quad}l} -\\mathrm{div}(a(x)\ abla u)+ a(x)u=\\varepsilon ^{2}a(x)|x-q|^{2\\alpha}e^{u} &\ ext{in $\\Omega $,} \\\\ \\frac{\\partial u}{\\partial n}=0, &\ ext{on $\\partial \\Omega $.} \\end{array}\\displaystyle \\right . $$\\end{document}
Read full abstract