BackgroundPhotocatalytic oxidation is a green method for water purification. However, the operation of traditional photocatalysts depends on exposure to UV radiation, which only forms a small portion of the spectrum comprising sunlight. The expansion of photocatalyst absorption to the visible range of light could greatly improve the efficiency and economic viability of the process. MethodsThe photocatalyst was prepared by first synthesising SrTiO3 nanoparticles by chemical precipitation followed by calcination. Then, SrTiO3 was doped with aluminium using a flux method with Al2O3 and SrCl2 at 1150 °C. Finally, the dual co-catalysts, Rh/Cr2O3 and CoOOH, were photodeposited onto SrTiO3@Al via sequential irradiation. Significant findingsThe Rh/Cr2O3/SrTiO3@Al/CoOOH nanocomposite degraded 87% of methylene blue (MB) (10 mg/L) under visible light in 1 h, a 3.3-fold improvement over pure SrTiO3 and 2.1-fold over a similar commercial composite. This enhancement is due to efficient charge separation resulting from Al doping and improved carrier transport as a result of the anisotropic deposition of the co-catalysts. Optimisation showed that 20 mg of photocatalyst in 50 mL of MB solution (5 mg/L) degraded 100% thereof within 45 min. DFT calculations showed uneven electron distribution in SrTiO3′s conduction band and structural changes with Al doping, further enhancing photocatalytic activity.
Read full abstract