Polymethylmethacrylate (PMMA) bone cement, which is used as a filler material in vertebroplasty, is one of the major sources of pulmonary embolism in patients who have undergone vertebroplasty. In the present study, we established and evaluated two animal models of pulmonary embolism by injecting PMMA or biphasic calcium composite (BCC) bone cement with a negative surface charge. A total of 12 adults and healthy Wuzhishan minipigs were randomly divided into two groups, the PMMA and BBC groups, which received injection of PMMA bone cement and BBC bone cement with a negative surface charge in the circulation system through the pulmonary trunk, respectively, to construct animal models of pulmonary embolism. The hemodynamics, arterial blood gas, and plasma coagulation were compared between these two groups. In addition, morphological changes of the lung were examined using three-dimensional computed tomography. The results showed that both PMMA and BCC injections induced pulmonary embolisms in minipigs. Compared to the PMMA group, the BCC group exhibited significantly lower levels of arterial pressure, pulmonary artery pressure, blood oxygen pressure, blood carbon dioxide pressure, blood bicarbonate, base excess, antithrombin III and D-dimer. In conclusion, BCC bone cement with a negative surface charge is a promising filler material for vertebroplasty.