Radiation therapy (RT) is a typical treatment for head and neck cancers. However, prolonged irradiation of the esophagus can cause esophageal fibrosis due to increased reactive oxygen species and proinflammatory cytokines. The objective of this study was to determine whether myogenic gene-transfected mesenchymal stem cells (MSCs) could ameliorate damage to esophageal muscles in a mouse model of radiation-induced esophageal fibrosis. We cloned esophageal myogenic genes (MyoD, MyoG, and Myf6) using plasmid DNA. Afterward, myogenic genes were transfected into Human Mesenchymal Stem Cells (hMSCs) using electroporation. Gene transfer efficiency, stemness, and myogenic gene profile were examined using flow cytometry, quantitative polymerase chain reaction, and RNA sequencing. In vivo efficacy of gene-transfected hMSCs was demonstrated through histological and gene expression analyses using a radiation-induced esophageal fibrosis animal model. We have confirmed that the gene transfer efficiency was high (∼75%). Pluripotency levels in gene-transfected MSCs were significantly decreased compared with those in the control (vector). Particularly, myogenesis-related genes such as OAS2, OAS3, and HSPA1A were overexpressed in the group transfected with three genes. At 4 weeks after injection, it was found that thickness collagen layer and esophageal muscle in MSCs transfected with all three genes were significantly reduced compared to those in the saline group. Muscularis mucosa was observed prominently in the gene combination group. Moreover, expression levels of myogenin, Myf6, calponin, and SM22α known to be specific markers of esophageal muscles tended to increase in the group transfected with three genes. Therefore, using gene-transfected MSCs has the potential as a promising therapy against radiation-induced esophageal fibrosis.
Read full abstract