During the in-orbit operation of spacecraft, permanent magnet synchronous motors are commonly used as power sources in the drive mechanisms of solar panel arrays and the high-precision servo control systems based on satellites. Apart from the performance of the motors themselves and the software control algorithms, the accuracy of the entire control system is also influenced by angle sensors used to detect the rotor position of the motors. As a high-precision angular measuring instrument, the inductosyn possesses excellent environmental adaptability and long service life. Effectively utilizing the inductosyn can greatly enhance the performance of servo control systems. To address the complexity of the decoding process for dual-channel round inductosyn-to-digital converters, this paper proposes a design of the decoding circuit for dual-channel round inductosyn based on the parallel-synchronization decoding method of two AD2S1210 Resolver-to-Digital Converter (RDC) decoding chips. The decoding circuit amplifies the excitation signal outputted by the AD2S1210 for driving the round inductosyn, and processes the sine and cosine induction signals outputted by the round inductosyn through filtering, amplification, and other methods; by using analog circuitry, the output signals of the dual-channel round inductosyn are processed to meet the input requirements of the AD2S1210. Finally, through both the Multisim (circuit simulation software Version 14.1) simulation and physical experiments, it was verified that the decoding circuit designed in this paper could process the input/output signals of the dual-channel round inductosyn and AD2S1210, and successfully decoded the analog induction signal of the round inductosyn. This greatly simplifies the signal decoding process for the dual-channel round inductosyn.
Read full abstract