Delayed graft function (DGF) increases morbidity and mortality in kidney transplant recipients. Operative parameters, including hemodynamic manipulation through vasopressors and fluids, can impact perfusion to the newly transplanted kidney and influence DGF incidence. We analyzed intraoperative time-series data in 5-minute intervals from kidney transplant recipient operations (N = 545) in conjunction with pretransplant characteristics and postsurgical outcomes, including DGF incidence, 60-day creatinine, and graft survival. Of the operations, 127 DGF events were captured in our cohort from a single academic transplant center (57/278 donations after brainstem death [DBDs], 65/150 donations after circulatory/cardiac death [DCDs], 5/117 live donations). In multiple regression, postanastomosis hypotension defined as mean arterial pressure (MAP) <75 mmHg was a risk factor for DGF independent of conventional predictors of DGF in DCD and DBD kidneys. DCD recipients with DGF had lower average postanastomosis MAP (DGF: 80.1 ± 8.1 mmHg vs no DGF: 76.4 ± 6.7 mmHg, P = .004). Interaction analysis demonstrated above-average doses of vasopressors and crystalloids were associated with improved outcomes when used at MAPs ≤75 mmHg, but they were associated with increased DGF at MAPs >75 mmHg, suggesting that the incidence of DGF can be highly influenced by intraoperative hemodynamic controls. This analysis of surgical time courses has identified potential new strategies for goal-directed anesthesia in renal transplantation.