The homomorphic substitution of the garnet group is common in nature. Two rare color-changing andradite garnets are studied in this paper. One color changes from yellowish-green in the presence of daylight to maroon under incandescent light; the other color changes from brownish yellow to brownish red. In this study, conventional gemological instruments, infrared (IR) spectroscopy, ultraviolet–visible–near infrared (UV–Vis–NIR) spectroscopy, Raman spectroscopy, and electron probe microanalysis (EPMA) were used to explore the gemology and coloration mechanisms of color-changing garnets. Experiments revealed that the color-changing gemstones in the study are andradite garnets. There are two transmission windows in the UV–Vis spectrum: the red region (above 650 nm) and the green region (centered at 525 nm). The chemical compositional analysis indicates that the samples are very low in Cr (<1 ppm) and high in Fe2+ (from 2.31 wt.% to 4.66 wt.%). The combined spectra and chemical compositional analysis show that Fe2+ is the main cause of the color change. Based on the IR spectrum (complex water peaks), UV–Vis–NIR spectrum (similar to that of Namibian andradite garnet), and chemical compositional analysis (low Cr content), it is concluded that color-changing andradite may be related to skarn rock genesis.
Read full abstract