The rationale for undertaking this study is lethality of diabetes mellitus as predicted by 6.7 million deaths in 2021 and immense pharmacological potential of Artemisa herba-alba. The current research examined how Artemisia herba-alba extract (AHE) affects the peripheral artery disease in diabetic rats through lowering of advanced glycation end products (AGEs). The in-vitro AGE inhibiting potential of AHE was determined by spectrofluorimetric method. The blood glucose levels and HbA1c (A1C) of the rats from each group were determined by automatic analyser. The levels of AGEs in vascular smooth muscle cells (VSMCs) of different rat groups were observed through western blotting. Expression of COX-1 and COX-2 were determined by qRT-PCR. The AHE inhibition of AGEs formation was reported in vitro and exhibited an IC50 of 45 μg/mL which was significantly lower than that of standard AGEs inhibitor aminoguanidine (IC50: 60 μg/mL). Analysis of metabolic profiles revealed that AHE normalised the blood glucose, cholesterol, and triglycerides with no apparent changes on Hb1Ac levels. Western blot analysis showed that AHE exhibited protective effects in VSMCs of diabetic rats by inhibiting fabrication of AGEs. Moreover, the manifestation of COX-2 was inhibited by AHE in diabetic rats. However, the expression of COX-1 remained unaltered. Collectively, the results revealed AHE inhibits AGEs formation in vitro and in VSMCs of diabetic rats. These findings point towards the prospective of AHE applications towards the management of diabetic peripheral artery disease.
Read full abstract