The discovery of "mismatch repair deficient (MMRd)-crypt foci" in non-neoplastic intestinal mucosa in Lynch syndrome (LS) has significantly enhanced our understanding of how tumors and tumor immunity form and evolve in LS. In this study, we report the frequent presence of "mismatch repair proficient (MMRp)-crypt foci" in both non-neoplastic and neoplastic intestinal mucosa in a patient with constitutional MMR deficiency (CMMRD), who carried a germline MSH6 pathogenic variant (c.3261dupC) in trans with an MSH6 likely pathogenic variant (c.3724_3726del) and whose tissues were otherwise deficient in MMR globally. The MMRp-crypts occurred at a rate of 1.1/100 crypts in non-neoplastic intestinal mucosa and were readily discernible in adenomas > 1cm. Sequencing analysis revealed normalization of the MSH6c.3261dupC variant in MMRp-adenoma crypts, indicating reverse frameshifting of the exon 5 C8 microsatellite. Interestingly but not surprisingly, the MMRp-adenoma crypts remained microsatellite-instability-high (MSI-H), and shared oncogenic APC mutations with the background MMRd-adenoma. Contrasting with MSH6-CMMRD, no PMS2-CMMRD individuals (0/5) harbored MMRp-crypts. In conclusion, our study documents distinct MMRp-crypts in MSH6-CMMRD, a phenomenon in keeping with MSH6 being a frequent target of MSI-H due to its coding microsatellite and suggesting that MSH6-CMMRD can potentially serve as a unique model system to further our understanding of MSH6's role in MSI-H tumor formation and evolution. Our findings also bear diagnostic implications; when using MMR immunohistochemistry as an ancillary tool in detecting CMMRD, awareness of these MMRp crypts can help avoid diagnostic pitfalls.