In this paper, a superhydrophobic organic-inorganic composite coating containing fluorinated B72 hybrid methyl-modified silica/(Ag doped TiO2) by hexamethyldisilazane (HMDS) (H-SiO2/Ag/TiO2) was prepared by means of a mild and an environmental friendly method. Transparency, adhesion, hardness tests and photocatalytic performance were measured to determine the content of Ag in TiO2 which the TiO2/AgNO3 ratio is 0.008 g/mL. The synthesized Ag/TiO2 nanoparticles were characterized by X-ray diffraction (XRD), Raman spectra and transmission electron microscope (TEM). The highest contact angle of coated ancient bricks was 148.66° and the color change value of ΔE⁎ before and after coating was <5 which is within an acceptable range. The physical properties such as apparent porosity and water vapor permeability (ΔMp) were studied. After weathering from acid, alkali, salt, water and ultraviolet radiation, the bricks coated by the composite coatings still have good hydrophobicity that the contact angle were >120° and minor degree of surface corrosion comparing with the ancient bricks. The inhibitory effect of the composite coating on Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), and that on algae (Chlamydomonas and Dunaliella) were studied through bacteriostasis test and algae comparative experiments, respectively. Finally, the mechanism of the composite coating on antibacterial and anti-algae was studied. The results showed that the appearance of the ancient bricks was not changed after coating, and the anti-weathering, antibacterial and anti-algae properties of the ancient transformation were increased.
Read full abstract