In this contribution, a series of Pd-promoted Nb-doped titania samples were essayed in the gas-phase thermo-photo production of syngas from methanol/water mixtures. The Pd loading was tested in the 0.1 to 2.5 wt % range, leading to the presence of metallic nanoparticles under reaction. Reaction rates exceeding 52 mmol H2 g-1 h-1 and quantum efficiencies above 33% were obtained. The optimum sample having a 0.5 wt % of Pd provided an outstanding synergy between light and heat under reaction conditions, facilitating the boost of activity with respect to the single-source processes and achieving high selectivity to syngas. The spectroscopic analysis of the physico-chemical ground of the activity unveiled that the noble metal interaction with the Nb-doped anatase support triggers a cooperative effect, promoting the evolution of formic acid-type methanol-derived carbon-containing species and rendering a significant enhancement of syngas production. The proposed thermo-photo system is thus a firm candidate to contribute to the new green circular economy.