Reproductive opportunities in insects that deposit their eggs in discrete resource patches are frequently limited because the availability of oviposition substrates is often spatially and temporally restricted. Such environmental variability leads individuals to confront time‐ or egg‐limitation constraints. Additionally, species with different oviposition strategies (i.e. single egg layers vs clutch layers) commonly deal with different structural and ecological characteristics of larval host plants. To test the hypothesis that oviposition strategies such as laying eggs singly or in batches (clutches) are related to these constraints (i.e. egg vs time limitation), we compared the lifetime oviposition patterns of two closely related sympatric species of Anastrepha (Diptera: Tephritidae) with different oviposition strategies. We exposed five cohorts of A. obliqua and A. ludens females, over the course of their adult lifetimes, to three conditions of “habitat quality” (measured as host density per cage): unpredictable habitat quality (host density varied randomly from day to day between 1, 5, 15, 30 and 60 hosts/cage), low habitat quality (fixed density of one host/cage) and high habitat quality (fixed density of 60 hosts/cage). Responses to host density conditions were strikingly different in the two species. (1) Frequency of host visits and oviposition events increased in A. obliqua but not in A. ludens when host densities increased. (2) Anastrepha ludens females accepted low quality hosts (i.e. fruits on which eggs had already been laid and were therefore partially covered with host marking pheromone) significantly more often than A. obliqua females did. (3) Females of A. obliqua adjusted their oviposition activity to variations in host density, whereas A. ludens females exhibited a constant oviposition pattern (i.e. did not respond to variations in host density). Based on the above, it is likely that in A. obliqua oviposition is governed by egg‐limitation and in A. ludens by time‐limitation constraints. We discuss the relationship between the oviposition strategies of each fly species and the fruiting phenology and density of their native host plants. We also address the possible influence of oogenesis modality and parasitism by braconid wasps in shaping oviposition behaviour in these insects.
Read full abstract