Understanding the structure of catalyst surfaces with adsorbed molecules is key to improving catalyst design. Scanning tunneling microscopy (STM) allows the observation of adsorption states and sites and provides insights into diffusion and desorption processes; however, the presence of multiple types of molecules on the surface presents challenges such as the identification of species and verification of reaction progress, particularly at room temperature or higher. In this study, we develop a protocol for the height classification analysis of STM images using the Watershed algorithm. This method is applied to a system involving the co-adsorption of H2O and CO on the Fe3O4(111) surface, which represents the beginning of the water-gas shift reaction. Water molecules and dissociated OH species were identified in STM images of the Fe3O4(111) surface following the adsorption of water. Furthermore, gradual changes in the types of surface species were observed upon exposure of the surface to CO, indicating reaction progression. Our observations suggest that CO may react with molecular water rather than with dissociated OH on Fe sites. Despite its simplicity, the height classification analysis effectively identifies changes in the adsorbates on the catalyst surface. This method can be extended to other catalyst surfaces with adsorbed gasses.
Read full abstract