Cybercrime, cyberbullying, and hate speech have all increased in conjunction with the use of the internet and social media. The scope of hate speech knows no bounds or organizational or individual boundaries. This disorder affects many people in diverse ways. It can be harsh, offensive, or discriminating depending on the target's gender, race, political opinions, religious intolerance, nationality, human color, disability, ethnicity, sexual orientation, or status as an immigrant. Authorities and academics are investigating new methods for identifying hate speech on social media platforms like Facebook and Twitter. This study adds to the ongoing discussion about creating safer digital spaces while balancing limiting hate speech and protecting freedom of speech. Partnerships between researchers, platform developers, and communities are crucial in creating efficient and ethical content moderation systems on Twitter and other social media sites. For this reason, multiple methodologies, models, and algorithms are employed. This study presents a thorough analysis of hate speech in numerous research publications. Each article has been thoroughly examined, including evaluating the algorithms or methodologies used, databases, classification techniques, and the findings achieved. In addition, comprehensive discussions were held on all the examined papers, explicitly focusing on consuming deep learning techniques to detect hate speech.
Read full abstract