We describe a new reverse simulation approach to analog and mixed-signal circuit test generation that parallels digital test generation. We invert the analog circuit signal flow graph, reverse simulate it with good and bad machine outputs, and obtain test waveforms and component tolerances, given circuit output tolerances specified by the functional test needs of the designer. The inverted graph allows backtracing to justify analog outputs with analog input sinusoids. Mixed-signal circuits can be tested using this approach, and we present test generation results for two mixed-signal circuits and four analog circuits, one being a multiple-input, multiple-output circuit. This analog backtrace method can generate tests for second-order analog circuits and certain non-linear circuits. These cannot be handled by existing methods, which lack a fault model and a backtrace method. Our proposed method also defines the necessary tolerances on circuit structural components, in order to keep the output circuit signal within the envelope specified by the designer. This avoids the problem of overspecifying analog circuit component tolerances, and reduces cost. We prove that our parametric fault tests also detect all catastrophic faults. Unlike prior methods, ours is a structural, rather than functional, analog test generation method.