A green anion exchange membrane for electrodialysis desalination was synthesized using a solvent-free photo-polymerization approach. Vinylbenzyl chloride (monomer), tripropylene glycol diacrylate (crosslinker), and photoinitiator were mixed and subjected to UV polymerization for 20 min to create the base membrane, followed by positive charge modification with 1-methylimidazole. This method avoids organic solvents, offering economic and environmental benefits. By adjusting the degrees of crosslinking and positive charge, precise control over the membrane's microstructure and properties was achieved. The optimized membrane showed an area resistance of 1.67 Ω cm2 and a transport number of 0.956, demonstrating exceptional electrochemical performance. Under comparable conditions, the optimized membrane improved the NaCl removal rate by 11.47 %, increased current efficiency by 10.61 %, and reduced energy consumption by 16.75 % compared to commercial AMV membrane, highlighting its potential for scalable seawater desalination through electrodialysis.
Read full abstract