IntroductionAging is associated with muscle decline, which alters both functional and anatomical properties of the neuromuscular system. These modifications can be reflected in high-density surface electromyography (HD-sEMG) signals. This study examines how age and sex impact the shape of the amplitude Probability Density Function (PDF) of HD-sEMG signals. Materials and MethodsMonopolar HD-sEMG signals were collected from the Biceps Brachii in a cohort of 17 individuals: 10 women (mean age: 22.9 ± 3.6 years) and 7 men (mean age: 24.4 ± 2.5 years) in the younger group, and 10 women (mean age: 69.8 ± 4.8 years) and 7 men (mean age: 72.8 ± 2.7 years) in the elderly group. The recordings were conducted during an elbow flexion at both 20% and 40% maximum voluntary contraction. The signal amplitude was evaluated using root means square amplitude (RMSA) and the PDF shape of each HD-sEMG signal was assessed through skewness, excess Kurtosis, and robust functional statistics. These shape distance metrics evaluate the departure from Gaussianity related to muscle aging. a) We conducted a comparison study of the HD-sEMG PDF shapes between younger and elderly individuals. b) Evaluating differences between men and women. c) Considering monopolar and Laplacian electrode configurations that are sensitive to different muscle regions. ResultsA) The HD-sEMG PDFs of elderly subjects demonstrated a lower departure from Gaussianity than their younger counterparts. B) Women exhibited lower RMSA values than men, and, on average, a lower departure from Gaussianity whatever the age and contraction level C) Trends of departure from Gaussianity with contraction level, seems to be influenced by the electrode configuration. In fact, a decrease in Gaussianity departure is observed with monopolar recordings where an increase is observed with Laplacian one, clearly indicating different muscle region assessment. DiscussionThe findings highlight the influence of factors such aging, sex, contraction level and electrode montage on the shape of the HD-sEMG PDF, emphasizing the significance of using this descriptor for monitoring and better assessment of muscle aging.