In this paper, we study a multi-hop amplify-and-forward (AF) simultaneous wireless information and power transmission (SWIPT) relay system. Each relay node harvests power using a power split (PS) method from a portion of the received signal, amplifies the remaining received signal, and passes it to the next relay. Based on this system model and signal flow, we derived and solved the convex power minimization problem with the optimal PS ratio. In this case, it was found that using the optimal PS ratio consumed a lower amount of power than when using a fixed PS ratio (0.5). We then investigated the impact of processing cost on the AF-SWIPT system using decoding and forwarding SWIPT as benchmarks, and found that AF-SWIPT was superior.
Read full abstract